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Abstract

Baseband waves in nonuniform transmission lines are analyzed by a perturbation procedure emphasizing one-

dimensional axial propagation. Successive orders of approximation generate both localized fields and new waves

propagating out from nonuniform regions.

Introduction

Nonuniform lines have traditionally been treated

by distributed circuit analysis, which gives a heuris-
tic approximation of unknown validity because of
incomplete physical content. These equations have

validity that goes beyond the simple identification of

uniform line solutions with regorous TEM field
solutions of simple form.

Field theories for nonuniform lines

Mode conversion problems have stimulat:d3aqclass

of field theories of nonuniform waveguides ~ $ . An
infinite set of coupled equations is derived for prop-
agation of modes suitably redefined at each cross-
section in terms of uniform waveguide nmdes for that
section. If all modes but the dominant mode are
neglected the nonuniform line equations are recovered.

These results appear to establish the connection bet-

ween the field equations and distributed circuit theory
but do not yield systematic improved approximations

short of complete solution, and do not make the role of
the taper length scale readily apparent. The modal

theory is not useful for even simple questions such as

determining minimum length scale of a coax line

transition of nominal uniform impedance. The modal

theory is a good tool for study of multimode wave-

guides but gives little physical insight into baseband

applications with a single dominant wave species.
Something more akin to the “warped mode” concept of
FOX5 is needed.

The key idea is found in the reinterpretation of

Solymar’s result6 as a proof that the nonuniform line

equation gives the first term in an asymptotic expan-

sion in the taper scale parameter. A perturbation

technique of Cole7 is extended to generate this

expansion. This complements the synthesis approach of

Mo, Papas, and Baum8.

The tapered plate line

We use the tapered plate line of Fig.1. as a sim-

ple example to illustrate the structure of the theory.
The donrhant “mode” solution is TM to z with magnetic
field satisfying the boundary value problem.
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Introduce normalized coordinates X+ =
t

xlao, z = ZIEO,

and t+ = t/((pE)4k ), where the time scale is normal-
ized t. th. t.amsi? tke th..ugh @h. ..Ct!L.n. l%.

dimensionless ratio n = a /~ iS used as the pertur-
bation expansion paramete? ig the limit n + O. With

these normalized variables, rl makes an explicit
appearance as
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The limit n + O may be regarded as either a. + O

orL +@. The former emphasizes directly the

domi~snce of transverse quasistatic behavicmr, while the
latter shows the behaviour for typical cross-section as

the taper is made more gradual with corresponding
lengthening of time scale. In (4) the factor n2
couples transverse and longitudinal effects which remain
uncoupled in the TEM solution for uniform line. Expand
Hv in a power series in n2.

.
Hy(x,z,t) = Ho(x+,z+,tt) + ~2 H2(x+,z+,t+) +.. (4)

and substitute in the equations. After classification

by powers of r12 an ordered sequence of problems is

obtained. In order 0(~0)

This
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has solution

Ho(x+,z+,t+) = Ao(zt,t+)

t
where A is an as yet arbitrary function of z and tt
only a~d constant with Xt. This is just the form of

solution envisaged in distributed circuit theory.
Higher order problems have the form in order 0(n2n)
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Substitute solution (6) for Ho and integrate the @(n2)

problem once to obtain
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which is when denormalized identical to the nonuniform
line equation for this structure. Distributed circu~.t

theory stops here, but the perturbation analysis now
generates correction terms of order 0(n2) and higher.
A further integration yields:
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where A,(z ,t ) is a new arbitrary function to be det-

ermined from consideration of the 0(r14) problem. The

first term depends only on the lower order solution
and vanishes outside the taper region, and A, is found
to satisfy an inhomogeneous version of the nonuniform
line equation (10) with source terms depending on the
taper profile and lower order solution. This sets the

general pattern for higher order solutions, with
localized field distortion terms , and new propagating
terms which will be apparent as in TDR measurements

outside the tapered section. An exact solution in the

frequency domain is available for a uniform wedge and

an expansion in r12 yields term by term agreement with
the perturbation series carried to 0(n6).

Curved centerlines

The perturbation analysis may be extended to
nonuniform tapered plate lines defined symmetrically
on a curved centerline, Fig.2, with the line profile
defined on the normals of the centerline defined by

x = x (g), z = z (c), where c is arclength along the

cente~line. Car?esian coordinates of a point in this

system are given by

X(c, c) = Xo(c) + E Cos’+f(c) (12)

z(C, C) = ZO(C) - Csin Y(C) (13)

This orthogonal coordinate system is uniquely
defined for our problem provided successive normals do
not intersect within the transmission line region.
The condition for this intersection is c dY = dg, so
the boundary profiles must satisfy b(C) ? g . The

differential equation for the transverse ms~etic field
becomes
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the scaling procedure is applied to these

equations by intro~u~ing normalized-variables c+ = </a.
and ~+ = C/L. with the functional form of the angle Y
rewritten as IJJ(C+). The scaling procedure with

v = so/Lo + O can be thOught Of as either a shrinking
of the transverse dimension a. on a given centerline,
or as a stretching of the centerline scale 10 in which
geometrical similarity is preserved. In normalized

variables the governing equations are:

Given coordinate uniqueness the denominator terms

may be expanded in convergent power series, and odd
powers of II will occur in both the differential equat-
ion and boundary condition.

The perturbation expansion for H will now need to

contain odd order terms

H= Ho+~H1+n2H2+~3H3 + . . . (16)

The tandard procedure
?’

H =A(C,tt)andH
~e;ds immediately

= AI(c ,t ) as arbitrary func-
t!ons ‘of C+ and t+ lonly. The equation in 0(r12) for
H, does not contain any curvature terms and the
solution is formmlly similar to the straight center-
line analysis, determining A. and associated field

distortion terms, and introducing a further undeter-
mined propagator A2(Ct,tt). The curvature ~kes its
first permanent a pearance in the third order equation.

7Detailed analysis here shows that the first order
undetermined propagator A satisfies the same equation
as A. Since no new info~ation is added we may take

HI =OO. The solution for H3 contains localized field

distortion terms proportional to centerline curvature.

Symmetry arguments show that all odd order new propa-

gators vanish, so that the odd order terms contribute
to the fields only within the nonuniform section.

The first curvature related terms visible outside

the nonuniform region are obtained in determining
AO(gf,t~) from partial solution of the sub-problem for
H; as curvature-dependent source terms for the non-

uniform line eauation for A.. Thus in the complete

solution of the curved tape~ed plate line problem the

dominant curvature dependent effects are of second
order in the common parameter for taper and curvature

scale.

A particular case of some interest is the curved
uniform line where all orders of propagating waves
obey the simple wave equation. The solution for A,

yields the one-dimensional wave equation,

The source terms are independent of the sign of

the curvature which fits the physical intuition that

a reflectometer measurement should not be able to
distinguish a given bend from a similar bend in the

opposite sense.

Consider a curved uniform line with sufficiently
smooth variation of curvature from an initial straight
section as a model for a time domain reflectometer
experiment. For unit step function excitation the

second order reflected wave observed in the initial

straight section, with time measured from the incident
step at the same position.

(20)

(17)
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which is proportional to the square of the curvature
+ down the line.at a round-trip travel time t

Coaxial Lines

Circular coaxial lines, besides being of great
technical importance, provide a good three dimensional

application for our analysis in the sense that
convenient laboratory realizations require relatively

little idealization to obtain a tractable theoretical

model. Also a grossly nonuniform coaxial line with

straight centerline can have constant impedance in

distributed circuit analysis.

The perturbation analysis for nonuniform coaxial

line on a straight centerline may be set up in

exactly similar fashion to the tapered plate line
analysis with the expected variations for rotational

fsymmetry . A similar structure of solution exists
with propagating terms in even order given by
inhomogeneous one dimensional nonuniform line equat-
ions with the differential operator identical to that

derived from distributed circuit theory. Escalation
of complexity with order is even more rapid.

Propagation in low impedance coaxial line, Fig.3.
is to physical intuition dominated by the presence

of the walls rather than the distant centerline.
Reflect for example on the situation where the inner

and outer walls are both in radial planes, or even

curving backwards. A longitudinal section through
such a geometry ia reminiscent of the tapered plate
line with curved centerline of the previous section.

A suitable orthogonal coordinate system is obtained
by rotation of that two dimensional coordinate

system about the coaxial line axis. This yields a

coordinate system centered in the propagation region

as shown in Fig.3. If $ is the azimuthal angle, then

with radius PO substituted for X. in (12,13) the
Cartesian coordinates (x, y,z) of a point in the

(E,C,$) system are

z = Zo(c) - C sin’+(~) (21)

(22)x s (PO(C) + ~ COSY(C)) Cos+

y = (PO(C) + C COSY(C)) sin$ (23)

It is convenient to let the mean radius scale

with Lo, although a scaling intermediate between a

and Lo would preserve the low impedance character. ”
The perturbation analysis follows the pattern of the

curved normal centerline analysis but with increased
complexity. The basic nonuniform transmission line

equation which results is

where Ho is the physical azimuthal magnetic field
component. A physical interpretation of this equation

is not difficult to find, recalling that sinY = dp /dG
Since mean circumference is proportional to Po, th?s

term measures the logarithmic rate of change of
circumference. If the low impedance line is viewed

as a finite width tapered plate line curled up
transversely then the first derivative term in (24)
expresses total impedance variation due to width
and spacing changes. In this version edge effects

are automatically taken care of. The simple appear-
ance of (24) is deceptive since a great deal of
structural information has been built into the coordin-
ate system used to exprese the equation. For example

it contains the exact TEN solution for a rsdial trans-

mission line between parallel plates, obtained by sett-

ing a = const. and Y = Tf2.

Conclusion

Perturbation analysis of the field theory of non-

uniform lines shows that distributed circuit theory

is the basic approximation of a systematic sequence

involving the taper and curvature scale parameter,
The approach is well suited to obtaining pnwerful

but formally simple approximate descriptions in some

grossly nonuniform situations, by suitable structuring
of the coordinate system used.
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Fig. 1 Geometry for symmetrical tapered plate line
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Fig. 2 Geometry for tapered plate line defined on

the normals to a curved centerline

Fig. 3 Conical coordinate system for propagation
region of low impedance nonuniform coaxial
line.
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