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Abstract

Baseband waves in nonuniform transmission lines are analyzed by a perturbation procedure emphasizing one-

dimensional axial propagation.
propagating out from nonuniform regions.

Introduction

Nonuniform lines have traditionally been treated
by distributed circuit analysis, which gives a heuris-
tic approximation of unknown validity because of
incomplete physical content., These equations have
validity that goes beyond the simple identification of
uniform line solutions with regorous TEM field
solutions of simple form.

Field theories for nonuniform lines

Mode conversion problems have stimulated a class
of field theories of nonuniform waveguides 2,34, an
infinite set of coupled equations is derived for prop-
agation of modes suitably redefined at each cross-
section in terms of uniform waveguide modes for that
section. If all modes but the dominant mode are
neglected the nonuniform line equations are recovered.
These results appear to establish the connection bet-
ween the field equations and distributed circuit theory
but do not yield systematic improved approximations
short of complete solution, and do not make the role of
the taper length scale readily apparent. The modal
theory is not useful for even simple questions such as
determining minimum length scale of a coax line
transition of nominal uniform impedance. The modal
theory is a good tool for study of multimode wave-
guides but gives little physical insight into baseband
applications with a single dominant wave species.
Something more akin to the "warped mode" concept of
Fox® is needed.

The key idea is found in the reinterpretation of
Solymar's result® as a proof that the nonuniform line
equation gives the first term in an asymptotic expan-
sion in the taper scale parameter. A perturbation
technique of Cole? is extended to generate this
expansion. This complements the synthesis approach of
Mo, Papas, and Baum8.

The tapered plate line

We use the tapered plate line of Fig.l. as a sim-
ple example to illustrate the structure of the theory.
The dominant "mode" solution is TM to z with magnetic
field satisfying the boundary value problem.
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Introduce normal;zed coordinates x+ = x/a _, z+ =z/% ,
and tT = t/((ue) % ), where the time scalé is normal=
1zed to the transift time through the seetion. The
dimensionless ration = a /% is used as the pertur-
bation expansion parameter i8 the limit n - 0. With
these normalized variables, n makes an explicit
appearance as

Successive orders of approximation generate both localized fields and

new waves
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The limit n + O may be regarded as either a -+ 0
or & =+ o, The former emphasizes directly the
dominance of transverse quasistatic behaviour, while the
latter shows the behaviour for typical cross-section as
the taper is made more gradual with corresponding
lengthening of time scale. In (4) the factor n2
couples transverse and longitudinal effects which remain

ucoupled in the TEM solution for uniform line. Expand
Hy in a power series in n2.
Hy(x,2,0) = LU IO N CUPLUR D N )

and substitute in the equations. After classification
by powers of n2 an ordered sequence of problems is

obtained. 1In order 0(n°)
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where A is an as yet arbitrary function of z+ and t+
only and constant with xt. This is just the form of
solution envisaged in distributed circuit theory.

Higher order problems have the form in order 0(n2n)
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Substitute solution (6) for H and integrate the 0(n?)
problem once to obtain
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which is when denormalized identical to the nonuniform
line equation for this structure. Distributed circuit
theory stops here, but the perturbatlon analysis now
generates correction terms of order 0(n2) and higher.
A further integration yields:
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where Az(z+,t+) is a new arbitrary function to be det-
ermined” from consideration of the 0(n%) problem. The
first term depends only on the lower order solution
and vanishes outside the taper region, and A, is found
to satisfy an inhomogeneous version of the nénuniform
line equation (10) with source terms depending on the
taper profile and lower order solution. This sets the
general pattern for higher order solutiomns, with
localized field distortion terms, and new propagating
terms which will be apparent as in TDR measurements
outside the tapered section. An exact solution in the
frequency domain is available for a uniform wedge and
an expansion in n2 yields term by term agreement with
the perturbation series carried to 0(nf).

Curved centerlines

The perturbation analysis may be extended to
nonuniform tapered plate lines defined symmetrically
on a curved centerline, Fig.2, with the line profile
defined on the normals of the centerline defined by
x=x (£), z = z (g), where 7 is arclength along the
centerline. Car%esian coordinates of a point in this
system are given by
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x(E,2) = x () + & cos¥(z)

z(£,2) = 2z (2) - Esin ¥(%)

This orthogonal coordinate system is uniquely
defined for our problem provided successive normals do
not intersect within the transmission line region.

The condition for this intersection is & d¥ = dg, so
the boundary profiles must satisfy b(Z) 2 £ . The
differential equation for the transverse magnetic field
becomes
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with boundary condition for perfectly conducting walls
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If the scaling procedure is applied to these
equations by introducing normalized variables E* = E/ao
and £' = c/lo with the functional form of the angle ¥
rewritten as w(c+). The scaling procedure with
n = ag/%, * 0 can be thought of as either a shrinking
of the transverse dimension a, on a given centerline,
or as a stretching of the centerline scale 2, in which
geometrical similarity is preserved. 1In normalized
variables the governing equations are:
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Given coordinate uniqueness the denominator terms
may be expanded in convergent power series, and odd
powers of n will occur in both the differential equat-
ion and boundary condition.

The perturbation expansion for H will now need to
contain odd order terms

H=H0+nH1+n2H2+n3H3+ (16)

The itandard procedure yields immediately
H = Ao(g ,t+) and H1 = Al(c ,t*) as arbitrary func~
tions “of ET and tT only. The equation in O(nz) for
H, does not contain any curvature terms and the
solution is formally similar to the straight center-
line analysis, determining A and associated field
distortion terms, and introducing a further undeter-
mined propagator A (gf,tf). The curvature makes its
first permanent agpearance in the third order equation.
Detailed analysis® here shows that the first order
undetermined propagator A, satisfies the same equation
as A . Since no new information is added we may take

H1 =00. The solution for H3 contalns localized field

distortion terms proportional to centerline curvature.
Symmetry arguments show that all odd order new propa-
gators vanish, so that the odd order terms contribute
to the fields only within the nonuniform section,

The first curvature related terms visible outside
the nonuniform region are obtained in determining
Ag(cf,t+) from partial solution of the sub-problem for
H, as curvature dependent source terms for the non-
uniform line equation for A,. Thus in the complete
solution of the curved tapefed plate line problem the
dominant curvature dependent effects are of second
order in the common parameter for taper and curvature
scale.

A particular case of some interest is the curved
uniform line where all orders of propagating waves
obey the simple wave equation. The solution for A

yields the one-dimensional wave equation, 2
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The source terms are independent of the sign of
the curvature which fits the physical intuition that
a reflectometer measurement should not be able to
distinguish a given bend from a similar bend in the
opposite sense.

Consider a curved uniform line with sufficiently
smooth variation of curvature from an initial straight
section as a model for a time domain reflectometer
experiment. For unit step function excitation the
second order reflected wave observed in the initial
straight section, with time measured from the incident
step at the same position.

(20)
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which is proportional to the square of the curvature
at a round-trip travel time t' down the line.

Coaxial Lines

Circular coaxial lines, besides being of great
technical importance, provide a good three dimensional
application for our analysis in the sense that
convenient laboratory realizations require relatively
little idealization to obtain a tractable theoretical
model. Also a grossly nonuniform coaxial line with
straight centerline can have constant impedance in
distributed circuit analysis.

The perturbation analysis for nonuniform coaxial
line on a straight centerline may be set up in
exactly similar fashion to the tapered plate line
analysis, with the expected variations for rotational
symmetryi. A similar structure of solution exists
with propagating terms in even order given by
inhomogeneous one dimensional nonuniform line equat-
ions with the differential operator identical to that
derived from distributed circuit theory. Escalation
of complexity with order is even more rapid.

Propagation in low impedance coaxial line, Fig.3.
is to physical intuition dominated by the presence
of the walls rather than the distant centerline.
Reflect for example on the situation where the inner
and outer walls are both in radial planes, or even
curving backwards., A longitudinal section through
such a geometry is reminiscent of the tapered plate
line with curved centerline of the previous section,
A suitable orthogonal coordinate system is obtained
by rotation of that two dimensional coordinate
system about the coaxial line axis. This yields a
coordinate system centered in the propagation region
as shown in Fig.3. If ¢ is the azimuthal angle, then
with radius p, substituted for x, in (12,13) the
Cartesian coordinates (x,y,z) of a point in the
(8,2,9) system are
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y = (DO(C) + £ cos¥(z)) sing (23)

It is convenient to let the mean radius scale
with 2,, although a scaling intermediate between a
and lo would preserve the low impedance character.
The perturbation analysis follows the pattern of the
curved normal centerline analysis but with increased
complexity. The basic nonuniform transmission line
equation which results is
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where Hy is the physical azimuthal magnetic field
component, A physical interpretation of this equation
is not difficult to find, recalling that sin¥ = dp /dz
Since mean circumference is proportional to Pos this
term measures the logarithmic rate of change of
circumference. If the low impedance line is viewed

as a finite width tapered plate line curled up
transversely then the first derivative term in (24)
expresses total impedance variation due to width

and spacing changes. In this version edge effects

are automatically taken care of. The simple appear-
ance of (24) is deceptive since a great deal of
structural information has been built into the coordin
ate system used to express the equation. TFor example
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it contains the exact TEM solution for a radial trans-
mission line between parallel plates, obtained by sett-
ing a = const. and ¥ = /2,

Conclusion

Perturbation analysis of the field theory of non-
uniform lines shows that distributed circuit theory
is the basic approximation of a systematic sequence
involving the taper and curvature scale parameter,
The approach is well suited to obtaining powerful
but formally simple approximate descriptions in some
grossly nonuniform situations, by sultable structuring
of the coordinate system used.
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Geometry for symmetrical tapered plate line
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Geometry for tapered plate line defined on
the normals to a curved centerline

Conical coordinate system for propagation
region of low impedance nonuniform coaxial



